voxblog/apps/api/REFACTORING_SUMMARY.md
Ender f160b26564
Some checks are pending
Deploy to Production / deploy (push) Waiting to run
feat: update service ports from 3000/3001 to 3300/3301
- Changed admin frontend port from 3000 to 3300 across all configuration files
- Changed API backend port from 3001 to 3301 across all configuration files
- Updated health check endpoints to use new ports in CI/CD workflow
- Modified documentation and deployment guides to reflect new port numbers
- Updated Caddy and Nginx reverse proxy configurations to use new ports
2025-10-26 00:25:40 +02:00

5.9 KiB

AI Generate Refactoring Summary

Overview

Refactored src/ai-generate.ts (453 lines) into a clean, maintainable architecture with proper separation of concerns.

New Structure

apps/api/src/
├── routes/
│   └── ai.routes.ts                    # 85 lines - Clean route handlers
├── services/
│   ├── ai/
│   │   ├── AIService.ts                # 48 lines - Main orchestrator
│   │   ├── contentGenerator.ts         # 145 lines - Content generation
│   │   ├── metadataGenerator.ts        # 63 lines - Metadata generation
│   │   └── altTextGenerator.ts         # 88 lines - Alt text generation
│   └── openai/
│       └── client.ts                   # 36 lines - Singleton client
├── utils/
│   ├── imageUtils.ts                   # 65 lines - Image utilities
│   ├── contextBuilder.ts               # 59 lines - Context building
│   ├── responseParser.ts               # 63 lines - Response parsing
│   └── errorHandler.ts                 # 60 lines - Error handling
├── types/
│   └── ai.types.ts                     # 87 lines - Type definitions
└── config/
    └── prompts.ts                      # 104 lines - Prompt templates

Benefits Achieved

Maintainability

  • Before: 453 lines in one file
  • After: 12 focused files, largest is 145 lines
  • Each module has a single, clear responsibility
  • Easy to locate and fix bugs

Testability

  • Service methods can be unit tested independently
  • Utilities can be tested in isolation
  • OpenAI client can be easily mocked
  • Clear interfaces for all components

Reusability

  • Utils can be used across different endpoints
  • Service can be used outside routes (CLI, jobs, etc.)
  • Prompts centralized and easy to modify
  • Image handling logic shared

Type Safety

  • Full TypeScript coverage with explicit interfaces
  • Request/response types defined
  • Compile-time error detection
  • Better IDE autocomplete and refactoring support

Error Handling

  • Centralized error handling with consistent format
  • Detailed logging with request IDs
  • Debug mode for development
  • Structured error responses

Key Improvements

1. Separation of Concerns

  • Routes: Only handle HTTP request/response
  • Services: Business logic and AI orchestration
  • Utils: Reusable helper functions
  • Config: Static configuration and prompts
  • Types: Type definitions and interfaces

2. OpenAI Client Singleton

  • Single instance with optimized configuration
  • 10-minute timeout for long requests
  • 2 retry attempts for transient failures
  • Shared across all AI operations

3. Specialized Generators

  • ContentGenerator: Handles gpt-5-2025-08-07 with Chat Completions API
  • MetadataGenerator: Handles gpt-5-2025-08-07 for metadata
  • AltTextGenerator: Handles gpt-5-2025-08-07 for accessibility

4. Utility Functions

  • imageUtils: Presigned URLs, format validation, placeholder extraction
  • contextBuilder: Build context from transcriptions and images
  • responseParser: Parse AI responses, strip HTML, handle JSON
  • errorHandler: Consistent error logging and responses

5. Request Tracking

  • Every request gets a unique UUID
  • Logs include request ID for correlation
  • Elapsed time tracking
  • Detailed error context

Migration Status

Completed

  • Type definitions
  • Configuration extraction
  • Utility functions
  • OpenAI client singleton
  • Service layer implementation
  • Route handlers refactored
  • TypeScript compilation verified

🔄 Active

  • New routes active at /api/ai/*
  • Old ai-generate.ts kept as backup (commented out)

📋 Next Steps

  1. Test all endpoints:

    • POST /api/ai/generate
    • POST /api/ai/generate-metadata
    • POST /api/ai/generate-alt-text
  2. Verify functionality:

    • Content generation with reference images
    • Metadata generation from HTML
    • Alt text with and without captions
    • Error handling and logging
  3. Remove old code (after validation):

    • Delete src/ai-generate.ts
    • Remove commented import in index.ts

Testing Commands

# Start API server
cd apps/api
pnpm run dev

# Test content generation
curl -X POST http://localhost:3301/api/ai/generate \
  -H "Content-Type: application/json" \
  -d '{"prompt": "Write about TypeScript best practices"}'

# Test metadata generation
curl -X POST http://localhost:3301/api/ai/generate-metadata \
  -H "Content-Type: application/json" \
  -d '{"contentHtml": "<h1>Test Article</h1><p>Content here</p>"}'

# Test alt text generation
curl -X POST http://localhost:3301/api/ai/generate-alt-text \
  -H "Content-Type: application/json" \
  -d '{"placeholderDescription": "dashboard_screenshot"}'

Rollback Plan

If issues arise, rollback is simple:

  1. Edit src/index.ts:

    // Comment out new routes
    // app.use('/api/ai', aiRoutesNew);
    
    // Uncomment old routes
    app.use('/api/ai', aiGenerateRouter);
    
  2. Restart server

  3. Old functionality restored immediately

File Size Comparison

Metric Before After
Single file 453 lines -
Largest file 453 lines 145 lines
Total files 1 12
Average file size 453 lines ~70 lines
Cyclomatic complexity High Low

Code Quality Metrics

  • Single Responsibility Principle
  • Dependency Injection ready
  • Easy to mock for testing
  • Clear module boundaries
  • Consistent error handling
  • Comprehensive logging
  • Type-safe throughout

Conclusion

The refactoring successfully transformed a complex 453-line file into a clean, maintainable architecture with 12 focused modules. Each component has a clear purpose, is independently testable, and follows TypeScript best practices.

Status: Ready for testing Risk: Low (old code preserved for easy rollback) Impact: High (significantly improved maintainability)